
Design of First-in-Class Dual EZH2/HDAC Inhibitor: Biochemical
Activity and Biological Evaluation in Cancer Cells
Annalisa Romanelli,∇ Giulia Stazi, Rossella Fioravanti,∇ Clemens Zwergel, Elisabetta Di Bello,
Silvia Pomella, Clara Perrone,∇ Cecilia Battistelli, Raffaele Strippoli, Marco Tripodi, Donatella del Bufalo,
Rossella Rota,* Daniela Trisciuoglio,* Antonello Mai,* and Sergio Valente*

Cite This: ACS Med. Chem. Lett. 2020, 11, 977−983 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Since the histone modifying enzymes EZH2 and HDACs
control a number of epigenetic-dependent carcinogenic pathways, we
designed the first-in-class dual EZH2/HDAC inhibitor 5 displaying
(sub)micromolar inhibition against both targets. When tested in several
cancer cell lines, the hybrid 5 impaired cell viability at low micromolar level
and in leukemia U937 and rhabdomyosarcoma RH4 cells provided G1 arrest,
apoptotic induction, and increased differentiation, associated with an
increase of acetyl-H3 and acetyl-α-tubulin and a decrease of H3K27me3
levels. In glioblastoma U87 cells, 5 hampered epithelial to mesenchymal
transition by increasing the E-cadherin expression, thus proposing itself as a
useful candidate for anticancer therapy.
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The recent epigenetic polypharmacology strategy of hybrid
drugs acting on different biological pathways is emerging

as a new pioneristic road toward modern cancer therapy. The
simultaneous inhibition of two or more targets by drug
combination or by a single “hybrid molecule” is currently
providing improvement in therapeutic efficacy and overcoming
resistance.1 Particularly, the hybrid inhibitors acting on
epigenetic targets have achieved promising results in
preclinical2 and clinical3 settings. Because of their ability to
activate multiple anticancer pathways such as extrinsic or
intrinsic apoptosis, inflammation/immune response, growth
arrest, mitotic and autophagic cell death, senescence, and
antiangiogenic networks,4,5 histone deacetylase inhibitors
(HDACi) emerged as very effective tools in cancer research
and pharmacology. Consistently, five of them have been
approved by the FDA [vorinostat (1, Figure 1), romidepsin,
belinostat, and panobinostat] or by the Chinese FDA
(chidamide) for the treatment of hematological malignancies.6

The coadministration of HDACi with other anticancer drugs
showed improved anticancer effects and motivated the design
of HDACi-based hybrid molecules,1,7−9 mainly targeting
epidermal growth factor receptor (EGFR), vascular endothelial
growth factor (VEGFR), cyclin dependent kinases (CDKs),
phosphoinositide 3-kinase (PI3K), and Janus kinase (JAK), in
addition to HDAC. Noteworthy, the multitarget EGFR/
HER2/HDAC and PI3Ks/HDAC hybrid inhibitors, CUDC-
101 and CUDC-907, overcame the cancer resistance to
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Figure 1. Rational design of dual EZH2/HDAC inhibitors 4 and 5.
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receptor tyrosine kinase inhibitors and strongly improved the
poor efficacy of HDAC inhibitors in solid tumors, hence
deserving the clinical trials arena.10,11

Another epigenetic enzyme, the catalytic unit of the
Polycomb Repressive Complex 2 (PRC2), i.e., the histone 3
lysine 27 (H3K27) methyltransferase Enhancer of Zeste
Homologue 2 (EZH2), achieved importance due to its ability
to silence many genes involved in cell proliferation, cell-cycle,
cell differentiation, and self-renewal5 and has been found
overexpressed or mutated in several human cancers.5 A
number of 2-pyridone-based EZH2 inhibitors have been
described, and notably some of them are under clinical
investigation (GSK126, CPI-1205) or have just been approved
(tazemetostat) for cancer treatment.12−14

Recently, our research group reported a series of 2-pyridone
pyrazole-containing EZH2 inhibitors, and among them 2
(Figure 1), when tested in cancer cells, induced breast MDA-
MB231, leukemia K562, and neuroblastoma SK-N-BE cells
growth arrest, along with reduction of the H3K27me3 levels
and induction of markers of apoptosis and autophagy.15 In
human medulloblastoma stemlike cells belonging to the Sonic
Hedgehog subgroup (SHH MB-SLCs), 2 impaired SHH MB
cells proliferation and self-renewal and induced apoptosis when
tested in vitro and in orthotopic xenografted MB-SLCs nude
mice.16 Prompted by these findings, we designed a series of
new compounds by replacing the pyrazole with the pyrrole
nucleus. Among them, the 2-pyridone pyrrole 3 (Figure 1) is
the prototype and two analogues, 3a and 3b (Figure 1) bearing
at C3 of the N-phenyl ring a piperidine or morpholine moiety,
respectively, reduced the H3K27me3 and increased the p21
and p27 expression levels, impairing primary glioblastoma
(GBM) as well as U-87 GBM cell viability in a dose- and time-
dependent manner similarly to tazemetostat.17 In combination
with Temozolomide, 3a,b and tazemetostat displayed a
comparable stronger effect on cell viability. Notably, 3a,b
attenuated the GBM malignant phenotype by reduction of
VEGFR1/VEGF expression, reversion of the epithelial-
mesenchymal transition (EMT) progression, inhibition of
cell invasion, and decrease of inflammatory cytokines levels.17

Recently, the combination of EZH2 and HDAC inhibitors
has been reported to increase apoptosis and DNA damage in
patient-derived brain-tumor initiating cell lines18 and to have
synergistic effects on lymphoma,19 multiple myeloma,20 small
cell carcinoma of the ovary, hypercalcemic type,21 and
nonsmall-cell lung cancer,22 in addition to additive effects on
triple negative breast cancers.23 These findings prompted us to
design two hybrid prototypes (compounds 4 and 5, Figure 1)
as dual EZH2/HDAC inhibitors by merging the 2 or 3
structure with the vorinostat 1 structural motif.
The cyclocondensation of (3-nitrophenyl)hydrazine with

tert-butyl (Z)-2-((dimethylamino)methylene)-3-oxobutanoate
in dry ethanol at 80 °C provided the tert-butyl 5-methyl-1-(3-
nitrophenyl)-1H-pyrazole-4-carboxylate 6. Alternatively, the
known 2,5-dimethyl-1-(3-nitrophenyl)-1H-pyrrole24 under-
went Friedel−Crafts acylation with trichloroacetyl chloride in
dry dichloroethane at 70 °C and successive hydrolysis with 2 N
potassium hydroxide to give the corresponding carboxylic acid
7, which afterwards was protected as tert-butyl ester (8) by
reaction with N,N-dimethylformamide di-tert-butyl acetal in
dry toluene at 90 °C. Both the meta nitro functions of 6 and 8
were reduced with metal zinc and ammonium chloride in 1,4-
dioxane:water 1:1 at 50 °C to afford the corresponding anilines
9 and 10, later acylated by the methyl 8-chloro-8-oxooctanoate

to furnish the intermediate compounds 11 and 12. The
carboxylic acids 13 and 14 were prepared by cleavage of the
tert-butyl function with trifluoroacetic acid in dry dichloro-
methane. The coupling reaction, carried out on the amine 3-
(aminomethyl)-4,6-dimethylpyridin-2(1H)-one17 with O-ben-
zotriazol-tetramethyluronium tetrafluoroborate (TBTU) and
triethylamine in dry N,N-dimethylformamide, led to the
corresponding amides 15 and 16. Methyl ester hydrolysis
with lithium hydroxide in a water and tetrahydrofuran (1:1)
mixture gave the acids 17 and 18 which were then converted
into the corresponding hydroxamates 4 and 5 by reaction with
O-(tetrahydro-2H-pyran-2yl)hydroxylamine, TBTU, and trie-
thylamine in dry N,N-dimethylformamide followed by acidic
cleavage with a 4 M hydrogen chloride solution in dioxane
(Scheme 1).

The newly synthesized compounds 4 and 5 have been
screened in a 10-dose IC50 mode with a 2-fold serial dilution
starting from 200 μM solutions, in an in vitro enzymatic assay
against a human five-component PRC2 complex containing
EZH2, embryonic ectoderm development (EED), suppressor
of zeste 12 (SUZ12), RbAp48, and adipocyte enhancer-
binding protein (AEBP2), to evaluate their ability to inhibit the
EZH2 catalytic activity. The assay was performed using core
histone and 3H-SAM as substrate and cosubstrate, respectively.
S-Adenosyl-L-homocysteine (SAH), 2, and 3 were used as
reference compounds. The new hybrid molecules 4 and 5 were
also screened against human recombinant HDAC1-6, -8 to
assess their capability to inhibit some representative members
of deacetylases as well. For this purpose, the fluorescent AMC-
K(Ac)GL (for HDAC1-3, -6, and -8) or AMC-K(trifluoroAc)-
GL (for HDAC4, -5) substrate has been used, and 1 was
employed as reference drug.
The biochemical data (Table 1) highlighted that the

pyrazole-based hydroxamate 4 lost the EZH2 inhibiting
activity (4% inhibition at 100 μM) shown by the
corresponding prototype 2. Against the tested HDACs, 4

Scheme 1. Synthesis of Hybrid Compounds 4 and 5a

aReagents and conditions: a) triethylamine, dry ethanol, 80 °C; b)
Zn(0), NH4Cl, H2O:1,4-dioxane 1:1, 50 °C; c) 1) trichloroacetyl
chloride, dry dichloroethane, 70 °C; 2) 2 N KOH aqueous solution,
ethanol/tetrahydrofuran 1:1; d) N,N-dimethylformamide di-tert-butyl
acetal, dry toluene, 90 °C; e) triethylamine, dry dichloromethane, RT;
f) trifluoroacetic acid, dry dichloromethane, RT; g) triethylamine,
TBTU reagent, dry N,N-dimethylformamide, RT; h) LiOH(aq),
tetrahydrofuran, RT; (i) 1) triethylamine, TBTU reagent, O-
(tetrahydro-2H-pyran-2-yl)hydroxylamine, dry N,N-dimethylforma-
mide, RT; 2) 4 N hydrogen chloride solution in 1,4-dioxane, dry
tetrahydrofuran, RT.
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displayed submicromolar IC50 against HDAC1 (0.83 μM) and
single-digit micromolar IC50 against the other class I HDACs
(HDAC2, -3, and -8: 2.36, 1.48, and 2.08 μM, respectively)
and inhibited HDAC6 (class IIb HDAC) at a nanomolar level
(IC50: 0.01 μM), while being inactive against the class IIa
HDAC4 and -5. Surprisingly, the replacement of the
heterocyclic nucleus of the hybrid compound from pyrazole
to pyrrole led to 5 which retained the biochemical inhibition
against EZH2/PRC2 with similar potency as the correspond-
ing single-target inhibitor 3. Against HDACs, the hybrid 5
exhibited a similar general inhibition profile as 4 but was more
potent. Indeed, with respect to 4, 5 displayed a 2-fold greater
potency against HDAC1 (IC50: 0.43 μM), -2 (IC50: 1.33 μM),
and -6 (IC50: 0.005 μM), over a 3-fold higher inhibition against
HDAC3 (IC50: 0.45 μM), and an almost 20-fold better efficacy
against HDAC8 (IC50: 0.11 μM). Versus HDAC4 and -5, 5
displayed weak inhibition (IC50 values: 36.8 and 16.6 μM,
respectively).
Before testing the dual EZH2/HDAC inhibitor 5 in cancer

contexts, we studied the effects of coadministration of 1 and 3
on human U937 leukemia and alveolar rhabdomyosarcoma
(RMS) RH4 cells, using 1 from 0.05 to 0.25 μM against both
cell types and 3 from 5 to 25 μM (U937 cells) or from 10 to
50 μM (RH4 cells) (Figure 2). Single treatments of U937 cells

with 1 or 3 dose-dependently reduced cell viability by 45% (1)
or 25% (3) after 72 h at the highest doses (Figure 2A).
Noteworthy, the combination of the two inhibitors nicely
provided a synergistic effect (Figure 2A) by reducing around
70% of the U937 cell viability using 0.1 μM 1 plus 10 μM 3
and over 90% at 0.25 μM 1 plus 25 μM 3. The combination
index (CI) (Table 2) and the isobologram graph (Figure 2C)

proved a very strong synergism between the two compounds in
U937 cell death induction, providing a CI value of 0.14 with
the first cotreatment. When tested in RH4 cells, 1 and 3 tested
alone displayed similar antiproliferative potency reducing over
30% the cell viability, while the combination exhibited over
60% of viability impairment at the highest tested doses (Figure
2B), with a synergistic effect confirmed by the calculated CI
values (Table 2) and by isobologram analysis (Figure 2D).
Targets engagement by 1, 3, and the 1/3 combination in

both U937 and RH4 cell lines has been demonstrated by
Western blot analyses (Figure 3). The 1/3 combination in
U937 cells gave an increase of Ac-H3 levels at 96 h, with partial
loss of effect at 120 h, a time point in which the expected
decrease of H3K27me3 levels was detected. With a different
timing, RH4 cells treated with the 1/3 combination exhibited
increased levels of Ac-tubulin and strong demethylation of
H3K27me3 after 72 h, which was maintained at 96 h.

Table 1. Biochemical Data of 1−5 against EZH2/PRC2 and HDAC1-6, -8 Isoforms

IC50, μM

hrHDAC isoforms

compd EZH2/PRC2 1 2 3 4 5 6 8

1 ND 0.26 0.92 0.35 0.49 0.38 0.03 0.24
SAH 34.7 ND ND ND ND ND ND ND
2 15.4 ND ND ND ND ND ND ND
3 5.78 ND ND ND ND ND ND ND
4 4% at 100 μM 0.83 2.36 1.48 NA 101 0.01 2.08
5 7.37 0.43 1.33 0.45 36.8 16.6 0.005 0.11

Figure 2. Cell viability of U937 (A) and RH4 (B) cells treated with 1
and 3 as single agents or in combination after 72 h at indicated
increasing concentrations. Isobologram analyses of 1/3 combination
in U937 (C) and RH4 (D) cells are reported.

Table 2. Combination Index Determination for 1 and 3
Cotreatment in U937 and RH4 Cells

U937 RH4

μM μM

1 3 FAa CIb 1 3 FAa CIb

0.01 1 0.05 3.34 0.05 10 0.27 0.64
0.1 10 0.68 0.14 0.1 20 0.45 0.49
0.25 25 0.92 0.04 0.25 50 0.63 0.54

aFA, fraction affected. bCI, combination index.

Figure 3. Effects of 1 and 3 as single agents and in combination in
U937 (1 at 0.5 and 3 at 50 μM) and RH4 (1 at 0.15 and 3 at 50 μM)
cells. Actin (U937) and vinculin (RH4) are used as equal loading.
Densitometries for Ac-H3, Ac-tubulin, and H3K27me3 levels,
normalized on an internal loading control and then on a vehicle
(DMSO), are reported in red.
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The synergy observed after 1/3 cotreatment in leukemia
U937 and rhabdomyosarcoma RH4 cells prompted us to
evaluate the dual EZH2/HDAC inhibitor 5 in the same cell
lines at different time-points (48, 72, and 96 h) at increasing
doses (at 5 to 25 μM in U937 and at 5 to 35 μM in RH4 cells).
After the longest treatment time, 5 reduced viability in U937

cells around 60% at 10 μM and 90% at 25 μM (Figure 4A) and
in RH4 cells over 60% at 20 μM and 90% at 35 μM (Figure
4B).

Next, 5 was additionally tested in human acute myeloid
leukemia THP1, neuroblastoma SH-N-SK, and glioblastoma
U87 cell lines, exhibiting antiproliferative IC50 values ranging
from 9 (U937) to 25 μM (SH-N-SK) after 72 h of treatment
(Table 3).

Afterward, the ability of 5 to modulate both the EZH2 and
HDAC targets in U937 and RH4 cells was evaluated (Figure
5). In U937 cells, 5 increased the acetylation levels of histone
H3 as well as α-tubulin, the specific HDAC6 substrate, up to
72 and 96 h of treatment, respectively (Figure 5A). At these
time points and indicated concentrations, negligible modu-
lation of H3K27me3 was observed (Figure 5A). The same
cells, treated with 5 at a higher dose (50 μM) and longer time
(from 72 to 144 h), clearly showed a very strong induction on
α-tubulin acetylation up to 96−120 h, much less evident at 144
h and, in parallel, a reduced H3K27me3 level only at 144 h
(Figure 5A), maybe due to Jumonji domain 3 (JmjD3) or
ubiquitously transcribed tetratricopeptide repeat X chromo-
some (UTX) inhibition, as already reported for HDAC
inhibitors.25 In RH4 cells, 5 induced a strong induction of
Ac-tubulin at 72 h, weaker after 96 h, and a clear reduction of
H3K27me3 levels at both 72 and 96 h of treatment (Figure
5B).
In order to characterize the antiproliferative activity of the

dual EZH2/HDAC inhibitor 5, the cell cycle was analyzed in
leukemia U937 and rhabdomyosarcoma RH4 cells. After 72 h

of treatment with 5 [10 or 25 μM in U937 (Figure 6A) and 14
or 28 μM in RH4 cells (Figure 6C)], the percentage of cells in

the subG1 phase was dose-dependently increased in both cell
lines suggesting the induction of apoptosis by 5. The analysis
of Annexin V expression confirmed this hypothesis with an
increase of the percentage of Annexin V positive cells up to
23.3% in U937 (Figure 6B) and to 26.5% in RH4 5-treated
cells (Figure 6D).

Figure 4. Cell viability of U937 (A) and RH4 (B) cells treated with
compound 5 after 48−96 h of treatment at the indicated increasing
concentrations.

Table 3. Antiproliferative Activity against Human U937,
RH4, THP1, SH-N-SK, and U87 Cancer Cell Linesa

IC50, μM ± SDb

compd U937 RH4 THP1 SH-N-SK U87

5 9 ± 1.5 13 ± 2.7 12 ± 2.2 25 ± 4.1 20 ± 3.6
aData are the means of three independent experiments measured in
triplicate. bSD, standard deviation.

Figure 5. Western blot analysis. (A) Effect of dual hybrid compound
5 on histone H3 and α-tubulin acetylation and H3K27 trimethylation
in U937 cells. (B) Effect of 5 on acetyl-tubulin and H3K27me3 levels
in RH4 cells. Densitometries for Ac-H3, Ac-tubulin, and H3K27me3
levels, normalized on an internal loading control and then on a vehicle
(DMSO), are reported in red.

Figure 6. Cell cycle analysis (A, C) and annexin-V-FITC staining (B,
D) after 72 h of treatment of U937 and RH4 cells with 5 at the
indicated concentrations. Control cells (untreated) were treated with
a vehicle (DMSO).
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Additionally, the cytodifferentiation effect induced by 5 was
evaluated in U937 and RH4 cells. In U937 cells the dual
inhibitor 5, tested at 10 and 25 μM for 72 h, increased by 2-
and 2.7-fold the cell surface adhesive receptor CD11b
expression (Figure 7A), a marker of cell differentiation. In

RH4 cells, 5 (7 μM, 96 h) increased the Myogenin (MYOG)
levels, indicating an activation of the myogenic differentiation
program (Figure 7B). This result is in agreement with a recent
paper26 that not only demonstrates the role of HDAC6 in
inhibition of RMS differentiation but also well correlates with
the EZH2 involvement in suppressing the transcription of
myogenic marker genes, such as MYOG.27 Taken together,
these data suggest that the dual EZH2/HDAC inhibitor 5
could be useful in RMS treatment, in which cellular
differentiation and myogenesis induction represent a potential
therapeutic approach.
Since both EZH2 and HDAC are involved in EMT and

either HDAC or EZH2 inhibitors reverted EMT in
cancers17,28,29 upregulating the epithelial markers, we treated
glioblastoma U87 cells with different amounts of 5 for 24 h
using DMSO as a control, to check the effect of 5 on the levels
of E-cadherin and Snail, two typical markers of epithelial and
mesenchymal cells. The Western blots shown in Figure 7C
highlighted that 5 provided a remarkable increase in the E-
cadherin protein expression, whereas in the same conditions
the Snail protein level was not affected. These data indicate
that the dual inhibition of EZH2 and HDAC by 5 allows the
rescue of the epithelial features in U87 cancer cells
independently from Snail and are in accordance with previous
evidence.30,31

In conclusion, we have described the discovery of the first
dual hybrid molecule 5 able to inhibit at the same time the
HDAC and EZH2 targets. When tested in several cancer cells,
including hematological malignancies such as leukemia U937
and THP1 as well as solid cancers such as rhabdomyosarcoma
RH4, neuroblastoma SH-N-SK, and glioblastoma U87, 5
displayed inhibition of proliferation at low micromolar
concentration. In U937 and RH4 cells, 5 was able to modulate
HDAC- and EZH2-dependent histone markers, leading to cell
cycle arrest in the subG1 phase, apoptosis induction, and
increased expression of cell differentiation markers. Further-
more, 5 hampered the EMT process in U87 cells by positively
modulating the epithelial E-cadherin expression. This study

highlights the basis for future biological investigation on the
effects of EZH2/HDAC simultaneous inhibition in cancer.
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